Home
Class 11
MATHS
Convert the following in polar form, (i)...

Convert the following in polar form,
(i)`-3sqrt2+3sqrt2i`

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \(-3\sqrt{2} + 3\sqrt{2}i\) into polar form, we will follow these steps: ### Step 1: Identify \(a\) and \(b\) The complex number can be expressed in the form \(a + bi\), where: - \(a = -3\sqrt{2}\) - \(b = 3\sqrt{2}\) ### Step 2: Calculate the modulus \(r\) The modulus \(r\) of the complex number is given by the formula: \[ r = \sqrt{a^2 + b^2} \] Calculating \(a^2\) and \(b^2\): \[ a^2 = (-3\sqrt{2})^2 = 9 \cdot 2 = 18 \] \[ b^2 = (3\sqrt{2})^2 = 9 \cdot 2 = 18 \] Now, substituting these values into the modulus formula: \[ r = \sqrt{18 + 18} = \sqrt{36} = 6 \] ### Step 3: Calculate the argument \(\theta\) The argument \(\theta\) can be found using the formulas: \[ \cos \theta = \frac{a}{r} \quad \text{and} \quad \sin \theta = \frac{b}{r} \] Calculating \(\cos \theta\): \[ \cos \theta = \frac{-3\sqrt{2}}{6} = -\frac{\sqrt{2}}{2} \] Calculating \(\sin \theta\): \[ \sin \theta = \frac{3\sqrt{2}}{6} = \frac{\sqrt{2}}{2} \] Now, we need to find \(\theta\) such that: - \(\cos \theta = -\frac{\sqrt{2}}{2}\) - \(\sin \theta = \frac{\sqrt{2}}{2}\) The angle that satisfies these conditions is: \[ \theta = \frac{3\pi}{4} \quad \text{(in the second quadrant)} \] ### Step 4: Write in polar form Now that we have \(r\) and \(\theta\), we can express the complex number in polar form: \[ z = r(\cos \theta + i \sin \theta) \] Substituting the values we found: \[ z = 6\left(\cos\frac{3\pi}{4} + i \sin\frac{3\pi}{4}\right) \] ### Final Answer Thus, the polar form of the complex number \(-3\sqrt{2} + 3\sqrt{2}i\) is: \[ z = 6\left(\cos\frac{3\pi}{4} + i \sin\frac{3\pi}{4}\right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Very Short Answer Type Questions(True or False|5 Videos
  • BINOMIAL THEOREM

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS(Section-D)|16 Videos
  • COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise section(D) (Long Answer Type Questions ) (6 Marks)|21 Videos

Similar Questions

Explore conceptually related problems

Convert the following in polar form, (iii) i(1+i)

Convert the following in polar form, (ii) ((sqrt3 -1)-(sqrt3+1)i)/((2sqrt2))

Convert the following in polar form: (1+3i)/(1-2i)

Convert the following into polar form : (i) -1+isqrt(3) (ii) 1-i (iii) 1-(1)/(i) (iv) 3-4i (v) sin120^(@)-icos120^(@) (vi) 2

Convert the following in polar form, (iv) (5-i)/(2-3i)

Convert the following into polar forms : 1-i,-1+i,-3,sqrt(3)+i

Convert the following in the polar form: (1+7i)/((2-i)^(2))

Convert the following in the polar form : ( i ) (1+7i)/((2-i)^(2)) (ii) (1+3i)/(1-2i)

Express the following in polar form, (i) sqrt(3)-i (ii) -4+4sqrt(3)i .

Convert the following polar coordinates to its equivalent Cartesian coordinates. (i) (2,pi) (ii) (sqrt(3),pi//6)

CBSE COMPLEMENTARY MATERIAL-COMPLEX NUMBERS AND QUADRATIC EQUATIONS -Short Answer Type Questions
  1. If ((2+2i)/(2-2i))^(n)=1 find the least positive integral of n.

    Text Solution

    |

  2. if (x+i y)^(1/3) = a+ib then (x/a) + (y/b) equals to

    Text Solution

    |

  3. Convert the following in polar form, (i)-3sqrt2+3sqrt2i

    Text Solution

    |

  4. Convert the following in polar form, (ii) ((sqrt3 -1)-(sqrt3+1)i)/((2s...

    Text Solution

    |

  5. Convert the following in polar form, (iii)i(1+i)

    Text Solution

    |

  6. Convert the following in polar form, (iv)(5-i)/(2-3i)

    Text Solution

    |

  7. Solve (i) x^(2) -(3sqrt2-2i)x-6sqrt2i=0

    Text Solution

    |

  8. Solve the following equations by using the general expression for a qu...

    Text Solution

    |

  9. Find the square root of 7-30Sqrt(-2)

    Text Solution

    |

  10. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  11. Show that |(z -2)/(z - 3)| = 2 represents a circle, find its centre ...

    Text Solution

    |

  12. Find all non zero complex numbers z satisfying barz=iz^2

    Text Solution

    |

  13. If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2...

    Text Solution

    |

  14. If z1,z2 are complex numbers such that, (2z1)/(3z2) is purely imaginar...

    Text Solution

    |

  15. If z1 and z2 are complex numbers such that, |1-bar z1z2|^(2)-|z1-z(2^(...

    Text Solution

    |

  16. Find the number of solutions of z^2+|z|^2=0.

    Text Solution

    |

  17. If z1,z2 are complex numbers such that, |(z1-3z2)/(3-z1.bar z2)|=1 and...

    Text Solution

    |

  18. Evaluate x^(4) -4x^(3)+4x^(2)+8x+44, when x=3+2i

    Text Solution

    |

  19. Complex number z1 and z2 satisfy z+barz=2|z-1| and arg (z1-z2) = pi/4 ...

    Text Solution

    |

  20. Solve the following quadratic equation: \ 2x^2-(3+7i)x+(9i-3)=0

    Text Solution

    |