Home
Class 11
MATHS
Convert the following in polar form, (ii...

Convert the following in polar form,
(ii) `((sqrt3 -1)-(sqrt3+1)i)/((2sqrt2))`

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \(\frac{\sqrt{3} - 1 - (\sqrt{3} + 1)i}{2\sqrt{2}}\) into polar form, we will follow these steps: ### Step 1: Simplify the Expression First, we simplify the numerator: \[ \sqrt{3} - 1 - (\sqrt{3} + 1)i = \sqrt{3} - 1 - \sqrt{3}i - i \] This can be rearranged as: \[ (\sqrt{3} - 1) - (\sqrt{3} + 1)i \] ### Step 2: Separate Real and Imaginary Parts Now, we can identify the real part \(a\) and the imaginary part \(b\): \[ a = \sqrt{3} - 1, \quad b = -(\sqrt{3} + 1) \] ### Step 3: Calculate the Modulus \(r\) The modulus \(r\) of a complex number \(a + bi\) is given by: \[ r = \sqrt{a^2 + b^2} \] Substituting the values of \(a\) and \(b\): \[ r = \sqrt{(\sqrt{3} - 1)^2 + (-(\sqrt{3} + 1))^2} \] Calculating \(a^2\): \[ (\sqrt{3} - 1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] Calculating \(b^2\): \[ (-(\sqrt{3} + 1))^2 = (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Now, substituting back into the modulus formula: \[ r = \sqrt{(4 - 2\sqrt{3}) + (4 + 2\sqrt{3})} = \sqrt{8} = 2\sqrt{2} \] ### Step 4: Calculate the Argument \(\theta\) The argument \(\theta\) is given by: \[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \] Substituting \(a\) and \(b\): \[ \theta = \tan^{-1}\left(\frac{-(\sqrt{3} + 1)}{\sqrt{3} - 1}\right) \] To simplify this, we can rationalize: \[ \theta = \tan^{-1}\left(-\frac{\sqrt{3} + 1}{\sqrt{3} - 1}\right) \] This can be further simplified using known angles. We find that: \[ \theta = -\frac{5\pi}{12} \] ### Step 5: Write in Polar Form The polar form of a complex number is given by: \[ r e^{i\theta} \] Thus, substituting the values we found: \[ \frac{\sqrt{3} - 1 - (\sqrt{3} + 1)i}{2\sqrt{2}} = \frac{2\sqrt{2}}{2\sqrt{2}} e^{-i\frac{5\pi}{12}} = e^{-i\frac{5\pi}{12}} \] ### Final Answer The polar form of the given complex number is: \[ e^{-i\frac{5\pi}{12}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Very Short Answer Type Questions(True or False|5 Videos
  • BINOMIAL THEOREM

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS(Section-D)|16 Videos
  • COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise section(D) (Long Answer Type Questions ) (6 Marks)|21 Videos

Similar Questions

Explore conceptually related problems

Convert the following in polar form, (i) -3sqrt2+3sqrt2i

Convert the following in polar form: (1+3i)/(1-2i)

Convert the following into polar forms : 1-i,-1+i,-3,sqrt(3)+i

Express the following in polar form, (i) sqrt(3)-i (ii) -4+4sqrt(3)i .

Put the following numbers in the polar form: -1-sqrt(3)i

Put the following numbers in the polar form: (-16)/(1+i sqrt(3)

Convert the following in the polar form : ( i ) (1+7i)/((2-i)^(2)) (ii) (1+3i)/(1-2i)

Express the following in the form of a+ib: (-sqrt3+sqrt(-2))(2sqrt3-i)

(sqrt3 + 1)/(2sqrt2) + (sqrt3 - 1)/(2sqrt2)

Convert each of the following complex numbers in polar form: (i) -3 (ii) sqrt3+i (iii) i .

CBSE COMPLEMENTARY MATERIAL-COMPLEX NUMBERS AND QUADRATIC EQUATIONS -Short Answer Type Questions
  1. if (x+i y)^(1/3) = a+ib then (x/a) + (y/b) equals to

    Text Solution

    |

  2. Convert the following in polar form, (i)-3sqrt2+3sqrt2i

    Text Solution

    |

  3. Convert the following in polar form, (ii) ((sqrt3 -1)-(sqrt3+1)i)/((2s...

    Text Solution

    |

  4. Convert the following in polar form, (iii)i(1+i)

    Text Solution

    |

  5. Convert the following in polar form, (iv)(5-i)/(2-3i)

    Text Solution

    |

  6. Solve (i) x^(2) -(3sqrt2-2i)x-6sqrt2i=0

    Text Solution

    |

  7. Solve the following equations by using the general expression for a qu...

    Text Solution

    |

  8. Find the square root of 7-30Sqrt(-2)

    Text Solution

    |

  9. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  10. Show that |(z -2)/(z - 3)| = 2 represents a circle, find its centre ...

    Text Solution

    |

  11. Find all non zero complex numbers z satisfying barz=iz^2

    Text Solution

    |

  12. If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2...

    Text Solution

    |

  13. If z1,z2 are complex numbers such that, (2z1)/(3z2) is purely imaginar...

    Text Solution

    |

  14. If z1 and z2 are complex numbers such that, |1-bar z1z2|^(2)-|z1-z(2^(...

    Text Solution

    |

  15. Find the number of solutions of z^2+|z|^2=0.

    Text Solution

    |

  16. If z1,z2 are complex numbers such that, |(z1-3z2)/(3-z1.bar z2)|=1 and...

    Text Solution

    |

  17. Evaluate x^(4) -4x^(3)+4x^(2)+8x+44, when x=3+2i

    Text Solution

    |

  18. Complex number z1 and z2 satisfy z+barz=2|z-1| and arg (z1-z2) = pi/4 ...

    Text Solution

    |

  19. Solve the following quadratic equation: \ 2x^2-(3+7i)x+(9i-3)=0

    Text Solution

    |

  20. What is the locus of z , if amplitude of (z-2-3i) is pi/2?

    Text Solution

    |