Home
Class 11
MATHS
If z1 and z2 are complex numbers such th...

If `z_1` and `z_2` are complex numbers such that, `|1-bar z_1z_2|^(2)-|z_1-z_(2^(2))|^(2)=k(1-|z_1|^(2)) (1-|z_2|^(2))`.Find value of k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation: \[ |1 - \overline{z_1} z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |z_2|^2) \] ### Step 1: Expand the Left-Hand Side (LHS) We start with the left-hand side: \[ |1 - \overline{z_1} z_2|^2 \] Using the property of modulus, we can express this as: \[ |1 - \overline{z_1} z_2|^2 = (1 - \overline{z_1} z_2)(1 - z_1 z_2) = 1 - \overline{z_1} z_2 - z_1 z_2 + |z_1|^2 |z_2|^2 \] Next, we will expand the second term: \[ |z_1 - z_2|^2 = (z_1 - z_2)(\overline{z_1} - \overline{z_2}) = |z_1|^2 + |z_2|^2 - z_1 \overline{z_2} - \overline{z_1} z_2 \] ### Step 2: Combine the Terms Now, we combine these two results: \[ |1 - \overline{z_1} z_2|^2 - |z_1 - z_2|^2 = \left(1 - \overline{z_1} z_2 - z_1 z_2 + |z_1|^2 |z_2|^2\right) - \left(|z_1|^2 + |z_2|^2 - z_1 \overline{z_2} - \overline{z_1} z_2\right) \] ### Step 3: Simplify the Expression Now, we simplify the expression: \[ = 1 - \overline{z_1} z_2 - z_1 z_2 + |z_1|^2 |z_2|^2 - |z_1|^2 - |z_2|^2 + z_1 \overline{z_2} + \overline{z_1} z_2 \] Combining like terms, we have: \[ = 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2 + z_1 \overline{z_2} + \overline{z_1} z_2 - \overline{z_1} z_2 - z_1 z_2 \] ### Step 4: Factor Out Common Terms Now, we notice that we can factor out \( (1 - |z_1|^2)(1 - |z_2|^2) \): \[ = (1 - |z_1|^2)(1 - |z_2|^2) \] ### Step 5: Compare with the Right-Hand Side (RHS) Now we have: \[ |1 - \overline{z_1} z_2|^2 - |z_1 - z_2|^2 = (1 - |z_1|^2)(1 - |z_2|^2) \] Comparing this with the right-hand side of the original equation: \[ k(1 - |z_1|^2)(1 - |z_2|^2) \] ### Step 6: Determine the Value of k From the comparison, we see that: \[ k = 1 \] Thus, the value of \( k \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Very Short Answer Type Questions(True or False|5 Videos
  • BINOMIAL THEOREM

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS(Section-D)|16 Videos
  • COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise section(D) (Long Answer Type Questions ) (6 Marks)|21 Videos

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)|+|z_(1)-z_(2)| then

If z_(-)1 and z_(-)2 are any two complex numbers show that |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2|z_(1)|^(2)+2|z_(2)|^(2)

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1, then

If z_(1) and z_(2) are two complex numbers such that z_(1)+2,1-z_(2),1-z, then

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

If z_(1) and z_(2), are two complex numbers such that |z_(1)|=|z_(2)|+|z_(1)-z_(2)|,|z_(1)|>|z_(2)|, then

Find the value of 'k' if for the complex numbers z_(1) and z_(2) . |1-bar(z_(1))z_(2)|^(2)-|z_(1)-z_(2)|^(2)=k(1-|z_(1)|^(2))(1-|z_(2)|^(2)) .

CBSE COMPLEMENTARY MATERIAL-COMPLEX NUMBERS AND QUADRATIC EQUATIONS -Short Answer Type Questions
  1. Prove that: x^4=4=(x+1+i)(x+1-i)(x-1+i(x-1-i)dot)

    Text Solution

    |

  2. Show that |(z -2)/(z - 3)| = 2 represents a circle, find its centre ...

    Text Solution

    |

  3. Find all non zero complex numbers z satisfying barz=iz^2

    Text Solution

    |

  4. If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2...

    Text Solution

    |

  5. If z1,z2 are complex numbers such that, (2z1)/(3z2) is purely imaginar...

    Text Solution

    |

  6. If z1 and z2 are complex numbers such that, |1-bar z1z2|^(2)-|z1-z(2^(...

    Text Solution

    |

  7. Find the number of solutions of z^2+|z|^2=0.

    Text Solution

    |

  8. If z1,z2 are complex numbers such that, |(z1-3z2)/(3-z1.bar z2)|=1 and...

    Text Solution

    |

  9. Evaluate x^(4) -4x^(3)+4x^(2)+8x+44, when x=3+2i

    Text Solution

    |

  10. Complex number z1 and z2 satisfy z+barz=2|z-1| and arg (z1-z2) = pi/4 ...

    Text Solution

    |

  11. Solve the following quadratic equation: \ 2x^2-(3+7i)x+(9i-3)=0

    Text Solution

    |

  12. What is the locus of z , if amplitude of (z-2-3i) is pi/2?

    Text Solution

    |

  13. If z=x+i ya n dw=(1-i z)/(z-i) , show that |w|=1 z is purely real.

    Text Solution

    |

  14. Express the following complex numbers in the form r(costheta+isintheta...

    Text Solution

    |

  15. Express the complex number in the form r(cos theta+isin theta) (ii)1-s...

    Text Solution

    |

  16. If (1+i)/(1+2^2i)xx(1+3^2i)/(1+4^2i)xx.......xx(1+(2n-1)^2i)/(1+(2n)^2...

    Text Solution

    |

  17. Find real values of xa n dy for which the complex numbers -3+i x^2ya n...

    Text Solution

    |

  18. The complex numbers z1 z2 and z3 satisfying (z1-z3)/(z2-z3) =(1- i sqr...

    Text Solution

    |

  19. If f(z)=(7-z)/(1-z^2) , where z=1+2i , then |f(z)| is (|z|)/2 (b) |z| ...

    Text Solution

    |

  20. If z1,z2 and z3 are complex numbers such that |z1|=|z2|=|z3|= |1/z1+1/...

    Text Solution

    |