Home
Class 11
MATHS
If \ ^m C1=\ \ ^n C2 then 2m=n b. 2m=n(n...

If `\ ^m C_1=\ \ ^n C_2` then `2m=n` b. `2m=n(n+1)` c. `2m=(n-1)` d. `2n=m(m-1)`

A

2m=n

B

2m=n(n+1)

C

2m=(n-1)

D

2n=m(m-1)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-A(TRUE/FALSE)|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B(Short anwer type question)|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-A(Fill in the blanks)|6 Videos
  • MATHEMATICAL REASONING

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B SHORT ANSWER TYPE QUESTIONS|5 Videos
  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION -D|6 Videos

Similar Questions

Explore conceptually related problems

If ^(m)C_(1)=^(n)C_(2) then 2m=nb2m=n(n+1) c.2m=(n-1)d2n=m(m-1)

If .^(m)C_(1)=.^(n)C_(2) prove that m=(1)/(2)n(n-1) .

If S_n denotes the sum of first n terms of an A.P. such that (S_m)/(S_n)=(m^2)/(n^2), t h e n(a_m)/(a_n)= a.(2m+1)/(2n+1) b. (2m-1)/(2n-1) c. (m-1)/(n-1) d. (m+1)/(n+1)

Let m ,n are integers with 0

If f(x)={m x+1\ \ \ ,\ \ \ xlt=pi/2,\ \ \ \ \ \sinx+n\ \ \ ,\ \ \ x >pi/2 is continuous at x=pi/2 , then m=1,\ \ n=0 (b) m=(npi)/2+1 (c) n=(mpi)/2 (d) m=n=pi/2

Straight lines are drawn by joining m points on a straight line of n points on another line. Then excluding the given points, the number of point of intersections of the lines drawn is (no tow lines drawn are parallel and no these lines are concurrent). a. 4m n(m-1)(n-1) b. 1/2m n(m-1)(n-1) c. 1/2m^2n^2 d. 1/4m^2n^2

The value of ^n C_1+^(n+1)C_2+^(n+2)C_3++^(n+m-1)C_m is equal to (a)^m+n C_(n-1) (b)^m+n C_(n-1) (c)^mC_(1)+^(m+1)C_2+^(m+2)C_3++^(m+n-1) (d)^m+1C_(m-1)

If sum_(r=m)^(n)hat rC_(m)=^(n+1)C_(m+1), then sum_(r=m)^(n)(n-r+1)^(r)C_(m) is equal to sum_(r=m)^(n)(n-r+1)^(r)C_(m) is equal to

Let g(x) = (x-1)^n/(log(cos^m(x-1))) ; 0 lt x lt 2 ,m and n and let p be the left hand derivative of |x - 1| at x = 1. If lim_(x->1) g(x) =p, then (A) n=1,m=1 (B) n=1,m=-1 (C) n=2,m=2 (D) n>2,m=n

lim_(x->0) [(2^m +x)^(1/m)-(2^m+x)^(1/n)]/x a) 1/(m2^m)-1/(n2^n) b) 1/(m2^(m-1))-1/(n2^(n-1)) c) m/2^(m-1)-n/2^(n-1) d) none of these