Home
Class 11
MATHS
""^(n)C(r)+^(n)C(r+1)=^(n+1)C(x),then x=...

`""^(n)C_(r)+^(n)C_(r+1)=^(n+1)C_(x)`,then x=?

A

r

B

r-1

C

n

D

r+1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{x} \), we will use the property of combinations. ### Step-by-Step Solution: 1. **Understand the Combination Property**: We know from the properties of combinations that: \[ \binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1} \] This property states that the sum of two consecutive combinations from the same \( n \) is equal to the combination of \( n+1 \) taken \( r+1 \). 2. **Set Up the Equation**: Given the equation: \[ \binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{x} \] We can replace the left-hand side using the property we just mentioned: \[ \binom{n+1}{r+1} = \binom{n+1}{x} \] 3. **Compare the Indices**: Since the combinations are equal, we can equate the indices: \[ x = r + 1 \] 4. **Conclusion**: Therefore, the value of \( x \) is: \[ x = r + 1 \] ### Final Answer: \[ x = r + 1 \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-A(TRUE/FALSE)|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B(Short anwer type question)|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-A(Fill in the blanks)|6 Videos
  • MATHEMATICAL REASONING

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B SHORT ANSWER TYPE QUESTIONS|5 Videos
  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION -D|6 Videos

Similar Questions

Explore conceptually related problems

If ^(n)C_(r)+^(n)C_(r+1)=^(n+1)C_(x), thenx =rb .r-1 c.n d.r+1

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

Let n and r be no negative integers suych that r<=n. Then,^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

If ^(n)P_(r)=^(n)P_(r+1) and ^(n)C_(r)=^(n)C_(r-1, then the ) value of n+r is.

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

Verify that ""^(n)C_(r )=(n)/(r ) ""^(n-1)C_(r-1) where n=6 and r=3 .

If ""^(n)C_(0), ""^(n)C_(1),..., ""^(n)C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q = 1 , then sum_(r=0)^(n) ""r.^(n)C_(r) p^(r) q^(n-r) =