Home
Class 11
MATHS
"^(n)C(r)=^(n)C(n-r)...

`"^(n)C_(r)=^(n)C_(n-r)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the identity \( \binom{n}{r} = \binom{n}{n-r} \), we will follow these steps: ### Step 1: Write the formula for \( \binom{n}{r} \) The binomial coefficient \( \binom{n}{r} \) is defined as: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] ### Step 2: Write the formula for \( \binom{n}{n-r} \) Now, let's express \( \binom{n}{n-r} \): \[ \binom{n}{n-r} = \frac{n!}{(n-r)!(n-(n-r))!} \] ### Step 3: Simplify \( n - (n-r) \) Now, simplify \( n - (n-r) \): \[ n - (n-r) = n - n + r = r \] ### Step 4: Substitute back into the formula Substituting \( n - (n-r) \) back into the formula for \( \binom{n}{n-r} \): \[ \binom{n}{n-r} = \frac{n!}{(n-r)!r!} \] ### Step 5: Compare the two expressions Now we have: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] \[ \binom{n}{n-r} = \frac{n!}{(n-r)!r!} \] ### Step 6: Conclude the proof Since both expressions are equal, we conclude that: \[ \binom{n}{r} = \binom{n}{n-r} \] Thus, we have proved that \( \binom{n}{r} = \binom{n}{n-r} \). ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B(Short anwer type question)|11 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Section - C(Short answer type question)|21 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-A(MCQ)|10 Videos
  • MATHEMATICAL REASONING

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B SHORT ANSWER TYPE QUESTIONS|5 Videos
  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION -D|6 Videos

Similar Questions

Explore conceptually related problems

Let n and r be no negative integers suych that r<=n. Then,^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

If ^(n)C_(r)=^(n)C_(r), then ^(n)C_(r) is equal to a.4896 b.816c.1632d .none of these

Prove by combinatorial argument that .^(n+1)C_(r)=^(n)C_(r)+^(n)C_(r-1)

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

""^(n)C_(r)+^(n)C_(r+1)=^(n+1)C_(x) ,then x=?

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

If .^(n)P_(r)=.^(n)P_(r+1) and .^(n)C_(r)=.^(n)C_(r-1) , find n and r.

If .^(n)C_(r-1)=.^(n)C_(3r) , find r.

If ""^(n)P_(r) = ""^(n)P_(r+1) and ""^(n)C_(r) = ""^(n) C_(r-1) then the value of r is equal to