Home
Class 11
MATHS
(sqrt2+1)^6+(sqrt2-1)^6=...

`(sqrt2+1)^6+(sqrt2-1)^6=`

Text Solution

Verified by Experts

The correct Answer is:
Zero
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS (section-C)|18 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Short Answer Type Questions|49 Videos

Similar Questions

Explore conceptually related problems

Solve (sqrt2+1)^x +(sqrt2-1)^x = 6 .

Show that (sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)=198

Find the value of (sqrt(2)+1)^(6)-(sqrt(2)-1)^(6)

Evaluate the following: (sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)

Expand (a+b)^(6)-(a-b)^(6). Hence find the value of (sqrt(2)+1)^(6)-(sqrt(2)-1)^(6)

Find (x+1)^(6)+(x-1)^(6)* hence,or otherwise evaluate (sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)

Find quad (x+1)^(6)+(x-1)^(6). Hence or otherwise evaluate (sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)

Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6) (ii) (sqrt(5)+sqrt(2))^(4)-(sqrt(5)-sqrt(2))^(4)

The number of integers satisfying the inequation |x-1|le[(sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)] where [.] denotes greatest integer function is greater than and equal to :