Home
Class 11
MATHS
If (1+i^2 +i^4 +i^6 +i^208)=a +ib,then t...

If `(1+i^2 +i^4 +i^6 +i^208)=a +ib`,then the value of (a,b) is

A

`-1`

B

1

C

0

D

`pm 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(1 + i^2 + i^4 + i^6 + i^{208}\) and express it in the form \(a + ib\), we can follow these steps: ### Step 1: Identify the powers of \(i\) Recall that \(i\) is the imaginary unit defined as \(i = \sqrt{-1}\). The powers of \(i\) cycle every four terms: - \(i^0 = 1\) - \(i^1 = i\) - \(i^2 = -1\) - \(i^3 = -i\) - \(i^4 = 1\) (and the cycle repeats) ### Step 2: Calculate each term 1. **Calculate \(i^2\)**: \[ i^2 = -1 \] 2. **Calculate \(i^4\)**: \[ i^4 = 1 \] 3. **Calculate \(i^6\)**: Since \(i^6 = i^{4+2} = i^4 \cdot i^2 = 1 \cdot (-1) = -1\). 4. **Calculate \(i^{208}\)**: To find \(i^{208}\), we can reduce the exponent modulo 4: \[ 208 \mod 4 = 0 \quad \text{(since } 208 = 4 \times 52\text{)} \] Thus, \(i^{208} = i^0 = 1\). ### Step 3: Substitute back into the expression Now substitute the calculated values back into the expression: \[ 1 + i^2 + i^4 + i^6 + i^{208} = 1 + (-1) + 1 + (-1) + 1 \] ### Step 4: Simplify the expression Now simplify the expression: \[ 1 - 1 + 1 - 1 + 1 = 1 \] ### Step 5: Express in the form \(a + ib\) The result \(1\) can be expressed as: \[ 1 + 0i \] Thus, we have \(a = 1\) and \(b = 0\). ### Final Answer The values of \(a\) and \(b\) are: \[ (a, b) = (1, 0) \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-A(TRUE /FALSE)|3 Videos
  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-A(FILL UPS)|3 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Section - D(Long answer type question)|17 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise (Section-D)Long Answer Type-II|7 Videos

Similar Questions

Explore conceptually related problems

If (a-ib)(3+5i) is the conjugate of -6-24i then the values of (a, b) is

" If "(i^(4)+i^(9)+i^(16))/(2-i^(8)+i^(10)+i^(3))=a+ib," then find the value of "a" and "b

Find the value of 1+i^2+i^4+i^6

Find the value of ( i^2 + i^4 + i^6 + i^7 ) / ( 1 + i^2 + i^3 ) is ( a ) 1 - i ( b ) 1 + i ( c ) 2 - i ( d ) 2 + i

For a common base transistor if the values of I_E and I_c are 10^3 muA and 0.96 mA respectively then the value of I_b will be -

If A , B ,C are angles of a triangles, then the value of |[e^(2i A),e^(-i C),e^(-i B)],[e^(-i C),e^(2i B),e^(-i A)],[e^(-i B),e^(-i A),e^(2i C)]| is 1 b. -1 c. -2 d. -4

If (2+3i)/(1+i)=A+iB, find the value of A and B.

If (a+ib)=i^(i-oo), find the value of a^(2)+b^(2) and (b)/(a).