Home
Class 11
MATHS
Find the modulus and argument of the com...

Find the modulus and argument of the complex number `z =(i^2 +i^3)/(i^4 +i^5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and argument of the complex number \( z = \frac{i^2 + i^3}{i^4 + i^5} \), we will follow these steps: ### Step 1: Simplify the numerator and denominator First, we need to calculate \( i^2 \), \( i^3 \), \( i^4 \), and \( i^5 \): - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) Now substituting these values into the expression for \( z \): \[ z = \frac{i^2 + i^3}{i^4 + i^5} = \frac{-1 - i}{1 + i} \] ### Step 2: Multiply numerator and denominator by the conjugate of the denominator To simplify \( z \), we multiply both the numerator and the denominator by the conjugate of the denominator, which is \( 1 - i \): \[ z = \frac{(-1 - i)(1 - i)}{(1 + i)(1 - i)} \] ### Step 3: Calculate the denominator The denominator simplifies as follows: \[ (1 + i)(1 - i) = 1^2 - i^2 = 1 - (-1) = 1 + 1 = 2 \] ### Step 4: Calculate the numerator Now, calculate the numerator: \[ (-1 - i)(1 - i) = -1 + i + i - i^2 = -1 + 2i + 1 = 2i \] ### Step 5: Combine the results Now we can write \( z \): \[ z = \frac{2i}{2} = i \] ### Step 6: Find the modulus of \( z \) The modulus of a complex number \( z = x + iy \) is given by: \[ |z| = \sqrt{x^2 + y^2} \] In our case, \( z = 0 + 1i \), so \( x = 0 \) and \( y = 1 \): \[ |z| = \sqrt{0^2 + 1^2} = \sqrt{1} = 1 \] ### Step 7: Find the argument of \( z \) The argument \( \theta \) of a complex number is given by: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] Here, since \( x = 0 \) and \( y = 1 \): \[ \theta = \tan^{-1}\left(\frac{1}{0}\right) \] The argument is \( \frac{\pi}{2} \) (or \( 90^\circ \)), since the point lies on the positive imaginary axis. ### Final Answer Thus, the modulus and argument of the complex number \( z \) are: - Modulus: \( 1 \) - Argument: \( \frac{\pi}{2} \)
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION -C|8 Videos
  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION -D|6 Videos
  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-A|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Section - D(Long answer type question)|17 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise (Section-D)Long Answer Type-II|7 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and argument of -4i.

Find the modulus and argument of the complex number (1+2i)/(1-3i)

Find the modulus and argument of the complex number -2+2sqrt3i

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i) (ii) 1/(1+i)

Find the modulus and argument of the complex number 3sqrt2 -3sqrt2i .

Find the modulus and argument of the following complex number: (1)/(1+i)

Find the modulus and argument of the following complex number: (1+i)/(1-i)

Find the modulus and argument of the following complex number: z=-sqrt(3)+i

Find the modulus and argument of the following complex number: z= (1+i)^13/(1-i)^7