Home
Class 11
MATHS
Find the sum of n-terms: [(1/1)+(1^3 +2...

Find the sum of n-terms:
`[(1/1)+(1^3 +2^3)/2 +(1^3 +2^3 +3^3)/3+....to n -terms`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the given series up to n terms, we can break down the problem step by step. ### Step 1: Understand the Series The series is given as: \[ S_n = \left( \frac{1^3}{1} \right) + \left( \frac{1^3 + 2^3}{2} \right) + \left( \frac{1^3 + 2^3 + 3^3}{3} \right) + \ldots + \left( \frac{1^3 + 2^3 + \ldots + n^3}{n} \right) \] We can denote the r-th term of the series as: \[ T_r = \frac{1^3 + 2^3 + \ldots + r^3}{r} \] ### Step 2: Use the Formula for the Sum of Cubes The sum of the first r cubes is given by the formula: \[ 1^3 + 2^3 + \ldots + r^3 = \left( \frac{r(r + 1)}{2} \right)^2 \] Thus, we can rewrite \(T_r\) as: \[ T_r = \frac{\left( \frac{r(r + 1)}{2} \right)^2}{r} = \frac{r(r + 1)^2}{4} \] ### Step 3: Find the Sum of n Terms Now, we need to find the sum of \(T_r\) from \(r = 1\) to \(n\): \[ S_n = \sum_{r=1}^{n} T_r = \sum_{r=1}^{n} \frac{r(r + 1)^2}{4} \] This can be simplified as: \[ S_n = \frac{1}{4} \sum_{r=1}^{n} r(r + 1)^2 \] ### Step 4: Expand and Simplify the Summation We need to expand \(r(r + 1)^2\): \[ r(r + 1)^2 = r(r^2 + 2r + 1) = r^3 + 2r^2 + r \] Thus, we can write: \[ S_n = \frac{1}{4} \left( \sum_{r=1}^{n} r^3 + 2\sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r \right) \] ### Step 5: Use Known Summation Formulas We will use the following formulas for summations: 1. \(\sum_{r=1}^{n} r = \frac{n(n + 1)}{2}\) 2. \(\sum_{r=1}^{n} r^2 = \frac{n(n + 1)(2n + 1)}{6}\) 3. \(\sum_{r=1}^{n} r^3 = \left( \frac{n(n + 1)}{2} \right)^2\) Substituting these into our expression for \(S_n\): \[ S_n = \frac{1}{4} \left( \left( \frac{n(n + 1)}{2} \right)^2 + 2 \cdot \frac{n(n + 1)(2n + 1)}{6} + \frac{n(n + 1)}{2} \right) \] ### Step 6: Simplify the Expression Calculating each part: 1. The first term: \(\left( \frac{n(n + 1)}{2} \right)^2 = \frac{n^2(n + 1)^2}{4}\) 2. The second term: \(2 \cdot \frac{n(n + 1)(2n + 1)}{6} = \frac{n(n + 1)(2n + 1)}{3}\) 3. The third term: \(\frac{n(n + 1)}{2}\) Combining these, we can factor out \(\frac{n(n + 1)}{4}\): \[ S_n = \frac{n(n + 1)}{4} \left( \frac{n(n + 1)}{4} + \frac{2(2n + 1)}{3} + 2 \right) \] ### Step 7: Final Calculation Now, we need to combine the terms in the parenthesis and simplify further. This will yield the final expression for \(S_n\). ### Final Answer After simplifying, we find: \[ S_n = \frac{n(n + 1)(3n^2 + 11n + 10)}{48} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER DESIGN - I

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION -C|8 Videos
  • PERMUTATIONS AND COMBINATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise Section - D(Long answer type question)|17 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise (Section-D)Long Answer Type-II|7 Videos

Similar Questions

Explore conceptually related problems

Find the sum till n terms: 1+(1^2+2^2)/2+(1^2+2^2+3^2)/3+...

The sum of (n-1) terms of 1+(1+3)+(1+3+5)+

Find the sum of the series (1)/(1)+(1^(3)+2^(3))/(1+3)+(1^(3)+2^(3)+3^(3))/(1+3+5)+... up to n terms.