Home
Class 11
MATHS
cos40^(@)+cos 80^(@)+cos160^(@)+cos240^(...

`cos40^(@)+cos 80^(@)+cos160^(@)+cos240^(@)`=

A

0

B

1

C

`(1)/(2)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos 40^\circ + \cos 80^\circ + \cos 160^\circ + \cos 240^\circ \), we can use the properties of cosine and some trigonometric identities. Let's break it down step by step. ### Step 1: Group the terms We can group the terms in pairs: \[ \cos 40^\circ + \cos 240^\circ + \cos 80^\circ + \cos 160^\circ \] ### Step 2: Use the cosine addition formula We can use the formula for the sum of cosines: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] #### Pair 1: \( \cos 40^\circ + \cos 240^\circ \) Let \( A = 40^\circ \) and \( B = 240^\circ \): \[ \cos 40^\circ + \cos 240^\circ = 2 \cos\left(\frac{40^\circ + 240^\circ}{2}\right) \cos\left(\frac{40^\circ - 240^\circ}{2}\right) \] Calculating the averages: \[ \frac{40^\circ + 240^\circ}{2} = \frac{280^\circ}{2} = 140^\circ \] \[ \frac{40^\circ - 240^\circ}{2} = \frac{-200^\circ}{2} = -100^\circ \] Thus, \[ \cos 40^\circ + \cos 240^\circ = 2 \cos(140^\circ) \cos(-100^\circ) \] Using the property \( \cos(-x) = \cos(x) \): \[ \cos(-100^\circ) = \cos(100^\circ) \] So, \[ \cos 40^\circ + \cos 240^\circ = 2 \cos(140^\circ) \cos(100^\circ) \] #### Pair 2: \( \cos 80^\circ + \cos 160^\circ \) Let \( A = 80^\circ \) and \( B = 160^\circ \): \[ \cos 80^\circ + \cos 160^\circ = 2 \cos\left(\frac{80^\circ + 160^\circ}{2}\right) \cos\left(\frac{80^\circ - 160^\circ}{2}\right) \] Calculating the averages: \[ \frac{80^\circ + 160^\circ}{2} = \frac{240^\circ}{2} = 120^\circ \] \[ \frac{80^\circ - 160^\circ}{2} = \frac{-80^\circ}{2} = -40^\circ \] Thus, \[ \cos 80^\circ + \cos 160^\circ = 2 \cos(120^\circ) \cos(-40^\circ) \] Using \( \cos(-x) = \cos(x) \): \[ \cos(-40^\circ) = \cos(40^\circ) \] So, \[ \cos 80^\circ + \cos 160^\circ = 2 \cos(120^\circ) \cos(40^\circ) \] ### Step 3: Combine both results Now we have: \[ \cos 40^\circ + \cos 240^\circ + \cos 80^\circ + \cos 160^\circ = 2 \cos(140^\circ) \cos(100^\circ) + 2 \cos(120^\circ) \cos(40^\circ) \] ### Step 4: Calculate the values Using known values: - \( \cos(140^\circ) = -\cos(40^\circ) \) - \( \cos(120^\circ) = -\frac{1}{2} \) Substituting these values: \[ = 2(-\cos(40^\circ)) \cos(100^\circ) + 2\left(-\frac{1}{2}\right) \cos(40^\circ) \] \[ = -2 \cos(40^\circ) \cos(100^\circ) - \cos(40^\circ) \] ### Step 5: Factor out \( \cos(40^\circ) \) \[ = \cos(40^\circ)(-2 \cos(100^\circ) - 1) \] ### Step 6: Simplify further Using \( \cos(100^\circ) = -\sin(10^\circ) \): \[ = \cos(40^\circ)(2\sin(10^\circ) - 1) \] ### Final Result The expression simplifies to: \[ \cos(40^\circ)(-1 - 2\sin(10^\circ)) \] ### Conclusion Thus, the final value of \( \cos 40^\circ + \cos 80^\circ + \cos 160^\circ + \cos 240^\circ \) is \( -\frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER-II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section-A (True//False)|3 Videos
  • PRACTICE PAPER-II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section-A (Fill in the blanks)|3 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise (Section-D)Long Answer Type-II|7 Videos
  • PRINCIPAL OF MATHEMATICAL INDUCTION

    CBSE COMPLEMENTARY MATERIAL|Exercise Short Answer Type Questions|24 Videos

Similar Questions

Explore conceptually related problems

cos 20^(@) cos 40^(@) cos 80^(@)=

The value of cos 20^(@) cos 40^(@)cos 60^(@) cos 80^(@) is equal to

cos20 ^ (@) cos40 ^ (@) cos60 ^ (@) cos80 ^ (@) - (1) / (16) =

Prove that: i) cos10^(@)cos30^(@)cos50^(@)cos70^(@)=3/16 ii) cos20^(@)cos40^(@)cos60^(@)cos80^(@)=1/16 iii) 4cos12^(@)cos48^(@)cos72^(@)=cos36^(@) iv) cos40^(@) cos80^(@)cos160^(@)=-1/8

Prove that cos 20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that :cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

Prove that: cos20^(@)cos40^(@)cos60^(@)cos80^(@)=(1)/(16)

A=cos20^(@)cos40^(@)cos60^(@)cos80^(@),B=cos60cos42^(@)cos66^(@)cos78^(@) and C=cos36^(@)cos72^(@)cos108^(@)cos144^(@) then

cos20 ^ (@) cos40 ^ (@) cos80 ^ (@) =