Home
Class 11
MATHS
lim (xrarr(pi)/(2))(1-sinx)/cos^(2)x=...

`lim _(xrarr(pi)/(2))(1-sinx)/cos^(2)x`=_____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x} \), we will follow these steps: ### Step 1: Write the limit expression We start with the limit expression: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x} \] ### Step 2: Use the identity for \(\cos^2 x\) We know the trigonometric identity: \[ \cos^2 x = 1 - \sin^2 x \] We can substitute this into our limit expression: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{1 - \sin^2 x} \] ### Step 3: Factor the denominator The expression \(1 - \sin^2 x\) can be factored using the difference of squares: \[ 1 - \sin^2 x = (1 - \sin x)(1 + \sin x) \] Thus, we can rewrite the limit as: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(1 - \sin x)(1 + \sin x)} \] ### Step 4: Cancel common factors Since \(1 - \sin x\) appears in both the numerator and the denominator, we can cancel it (as long as \(x \neq \frac{\pi}{2}\)): \[ \lim_{x \to \frac{\pi}{2}} \frac{1}{1 + \sin x} \] ### Step 5: Substitute the limit Now we substitute \(x = \frac{\pi}{2}\) into the simplified expression: \[ \lim_{x \to \frac{\pi}{2}} \frac{1}{1 + \sin\left(\frac{\pi}{2}\right)} = \frac{1}{1 + 1} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER-II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section-A|6 Videos
  • PRACTICE PAPER-II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section-B (short answer type)|9 Videos
  • PRACTICE PAPER-II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section-A (True//False)|3 Videos
  • PRACTICE PAPER III

    CBSE COMPLEMENTARY MATERIAL|Exercise (Section-D)Long Answer Type-II|7 Videos
  • PRINCIPAL OF MATHEMATICAL INDUCTION

    CBSE COMPLEMENTARY MATERIAL|Exercise Short Answer Type Questions|24 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(x rarr pi/2)(1-(sinx)^(sinx))/(cos^2x)=

lim_(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3)))/(pi-2x)^(4)

lim_(xrarr(pi^(-))/(2)) [1+(cosx)^(cosx)]^(2)=

Evaluate the following limits: lim_(xrarr(pi)/(4))(1-tanx)/(1-sqrt2sinx)

Evaluate lim_(xrarr(pi)/(2))(cosx)/(((pi)/(2)-x)).

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

lim_(xrarr0)(tanx-sinx)/(x^3)=

What is underset(xrarr(pi)/(2))limf(x)=underset(xrarr(pi)/(2))lim(1-sinx)/((pi-2x)^(2)) equal to ?