Home
Class 12
MATHS
Find the absolute maximum of x^(40) -x^(...

Find the absolute maximum of `x^(40) -x^(20)` on the interval [0,1].

Text Solution

AI Generated Solution

The correct Answer is:
To find the absolute maximum of the function \( f(x) = x^{40} - x^{20} \) on the interval \([0, 1]\), we will follow these steps: ### Step 1: Evaluate the function at the endpoints of the interval We need to check the values of the function at the endpoints \( x = 0 \) and \( x = 1 \). \[ f(0) = 0^{40} - 0^{20} = 0 - 0 = 0 \] \[ f(1) = 1^{40} - 1^{20} = 1 - 1 = 0 \] ### Step 2: Find the derivative of the function Next, we find the derivative of the function \( f(x) \): \[ f'(x) = \frac{d}{dx}(x^{40} - x^{20}) = 40x^{39} - 20x^{19} \] ### Step 3: Set the derivative equal to zero to find critical points We set the derivative equal to zero to find critical points: \[ 40x^{39} - 20x^{19} = 0 \] Factoring out the common terms: \[ 20x^{19}(2x^{20} - 1) = 0 \] This gives us two factors: 1. \( 20x^{19} = 0 \) which gives \( x = 0 \) 2. \( 2x^{20} - 1 = 0 \) which gives \( x^{20} = \frac{1}{2} \) From \( x^{20} = \frac{1}{2} \), we find: \[ x = \left(\frac{1}{2}\right)^{\frac{1}{20}} \] ### Step 4: Evaluate the function at the critical point Now we evaluate the function at the critical point \( x = \left(\frac{1}{2}\right)^{\frac{1}{20}} \): \[ f\left(\left(\frac{1}{2}\right)^{\frac{1}{20}}\right) = \left(\left(\frac{1}{2}\right)^{\frac{1}{20}}\right)^{40} - \left(\left(\frac{1}{2}\right)^{\frac{1}{20}}\right)^{20} \] Calculating each term: \[ = \left(\frac{1}{2}\right)^{\frac{40}{20}} - \left(\frac{1}{2}\right)^{\frac{20}{20}} = \left(\frac{1}{2}\right)^{2} - \left(\frac{1}{2}\right)^{1} = \frac{1}{4} - \frac{1}{2} \] \[ = \frac{1}{4} - \frac{2}{4} = -\frac{1}{4} \] ### Step 5: Compare the values to find the absolute maximum Now we compare the values of \( f(0) \), \( f(1) \), and \( f\left(\left(\frac{1}{2}\right)^{\frac{1}{20}}\right) \): - \( f(0) = 0 \) - \( f(1) = 0 \) - \( f\left(\left(\frac{1}{2}\right)^{\frac{1}{20}}\right) = -\frac{1}{4} \) The maximum value among these is \( 0 \). ### Conclusion Thus, the absolute maximum of \( f(x) \) on the interval \([0, 1]\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 2 MARK QUESTIONS|20 Videos
  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|57 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos

Similar Questions

Explore conceptually related problems

The maximum value of x^(3)-3x in the interval [0,2] is

Find the maximum value of 2x^(3)-24x+107 in the interval [1,3]. Find the maximum value of the same function in [-3,-1]

Find the maximum value of 2x^(3)-24x+107 in the interval [1,3] .Find the maximum value of the same function in [-3,-1]

The absolute maximum of y=x^(3)-3x+2 in 0<=x<=2 is

Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the interval [0,1] .

Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the interval [0,1] .

Find both the maximum and the minimum value of 3x^(4)-8x^(3)+12x^(2)-48x+1 on the interval [1,4] .

Find the local maximum value of x(1-x)^(2)0<=x<=

Show that f(x)=sin x(1+cos x) is maximum at x=(pi)/(3) in the interval [0,pi] .

Find the absolute maximum of the function f(x)=x^3+3x^2-9x+7 in the interval [-4,2] .