Home
Class 12
MATHS
Find the maimum and minimum values of th...

Find the maimum and minimum values of the function f(x)= sin (sin x)

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = \sin(\sin x) \), we can follow these steps: ### Step 1: Determine the range of \( \sin x \) The sine function, \( \sin x \), oscillates between -1 and 1 for all real numbers \( x \). Therefore, we have: \[ -1 \leq \sin x \leq 1 \] ### Step 2: Find the range of \( f(x) = \sin(\sin x) \) Next, we need to evaluate \( f(x) = \sin(\sin x) \) based on the range of \( \sin x \). Since \( \sin x \) takes values between -1 and 1, we can substitute these limits into the sine function: \[ \sin(-1) \leq \sin(\sin x) \leq \sin(1) \] ### Step 3: Calculate \( \sin(-1) \) and \( \sin(1) \) Using a calculator or trigonometric tables, we find: - \( \sin(1) \) is approximately \( 0.8415 \) - \( \sin(-1) = -\sin(1) \) is approximately \( -0.8415 \) ### Step 4: Establish the maximum and minimum values From the calculations above, we can conclude: - The maximum value of \( f(x) = \sin(\sin x) \) is \( \sin(1) \approx 0.8415 \) - The minimum value of \( f(x) = \sin(\sin x) \) is \( \sin(-1) \approx -0.8415 \) ### Final Answer Thus, the maximum and minimum values of the function \( f(x) = \sin(\sin x) \) are: - Maximum value: \( \sin(1) \approx 0.8415 \) - Minimum value: \( \sin(-1) \approx -0.8415 \) ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|57 Videos
  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 6 MARK QUESTIONS|13 Videos
  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 6 MARK QUESTIONS|13 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

Knowledge Check

  • The maximum and minimum values of the function |sin 4x+3| are

    A
    1,2
    B
    4,2
    C
    2,4
    D
    `-1,1`
  • Similar Questions

    Explore conceptually related problems

    Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

    Find sum of maximum and minimum values of the function f(x)=sin^(2)x+8cos x-7

    Find the maximum or minimum value of the function (sin x)/(1+tan x)

    Find the minimum and maximum values of the function f(x) =a cos x+b sin x(a^(2)+b^(2) gt 0)

    The difference between the maximum and minimum value of the function f(x)=3sin^(4)x-cos^(6)x is :

    The sum of the maximum and minimum values of the function f(x)=sin^(-1)4x+cos^(-1)4x+sec^(-1)4x is

    Find the absolute maximum and minimum values of the function f given by f(x)=cos^(2)x+sin x,x in[0,pi]