Home
Class 12
MATHS
Find the absolute maximum value and abso...

Find the absolute maximum value and absolute minimum value of the following question `f(x) =((1)/(2)-x)^(2)+x^(3)" in "[-2,2.5]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the absolute maximum and minimum values of the function \( f(x) = \left(\frac{1}{2} - x\right)^2 + x^3 \) on the interval \([-2, 2.5]\), we will follow these steps: ### Step 1: Find the derivative of the function First, we need to differentiate the function \( f(x) \). \[ f(x) = \left(\frac{1}{2} - x\right)^2 + x^3 \] Using the chain rule and power rule, we differentiate: \[ f'(x) = 2\left(\frac{1}{2} - x\right)(-1) + 3x^2 \] Simplifying this, we get: \[ f'(x) = -2\left(\frac{1}{2} - x\right) + 3x^2 = -1 + 2x + 3x^2 \] Thus, \[ f'(x) = 3x^2 + 2x - 1 \] ### Step 2: Set the derivative equal to zero To find critical points, we set the derivative equal to zero: \[ 3x^2 + 2x - 1 = 0 \] ### Step 3: Solve the quadratic equation We will use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 3, b = 2, c = -1 \). Calculating the discriminant: \[ b^2 - 4ac = 2^2 - 4 \cdot 3 \cdot (-1) = 4 + 12 = 16 \] Now applying the quadratic formula: \[ x = \frac{-2 \pm \sqrt{16}}{2 \cdot 3} = \frac{-2 \pm 4}{6} \] This gives us two solutions: \[ x_1 = \frac{2}{6} = \frac{1}{3}, \quad x_2 = \frac{-6}{6} = -1 \] ### Step 4: Evaluate the function at critical points and endpoints Now we evaluate \( f(x) \) at the critical points and the endpoints of the interval \([-2, 2.5]\). 1. **At \( x = -2 \)**: \[ f(-2) = \left(\frac{1}{2} - (-2)\right)^2 + (-2)^3 = \left(\frac{1}{2} + 2\right)^2 - 8 = \left(\frac{5}{2}\right)^2 - 8 = \frac{25}{4} - 8 = \frac{25}{4} - \frac{32}{4} = -\frac{7}{4} \] 2. **At \( x = -1 \)**: \[ f(-1) = \left(\frac{1}{2} - (-1)\right)^2 + (-1)^3 = \left(\frac{1}{2} + 1\right)^2 - 1 = \left(\frac{3}{2}\right)^2 - 1 = \frac{9}{4} - 1 = \frac{9}{4} - \frac{4}{4} = \frac{5}{4} \] 3. **At \( x = \frac{1}{3} \)**: \[ f\left(\frac{1}{3}\right) = \left(\frac{1}{2} - \frac{1}{3}\right)^2 + \left(\frac{1}{3}\right)^3 = \left(\frac{3}{6} - \frac{2}{6}\right)^2 + \frac{1}{27} = \left(\frac{1}{6}\right)^2 + \frac{1}{27} = \frac{1}{36} + \frac{1}{27} \] Finding a common denominator (108): \[ = \frac{3}{108} + \frac{4}{108} = \frac{7}{108} \] 4. **At \( x = 2.5 \)**: \[ f(2.5) = \left(\frac{1}{2} - 2.5\right)^2 + (2.5)^3 = \left(-2\right)^2 + 15.625 = 4 + 15.625 = 19.625 = \frac{157}{8} \] ### Step 5: Compare values Now we compare the values obtained: - \( f(-2) = -\frac{7}{4} \) - \( f(-1) = \frac{5}{4} \) - \( f\left(\frac{1}{3}\right) = \frac{7}{108} \) - \( f(2.5) = \frac{157}{8} \) ### Conclusion The absolute maximum value is \( \frac{157}{8} \) and the absolute minimum value is \( -\frac{7}{4} \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 6 MARK QUESTIONS|13 Videos
  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 2 MARK QUESTIONS|20 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos

Similar Questions

Explore conceptually related problems

Find the absolute maximum value and the absolute minimum value of the following functions is given intervals : f(x)=x^(2), x in [-2, 2]

Find the absolute maximum value and the absolute minimum value of f(x)=sin x+cos x in [0,pi]

Find the absolute maximum value and the absolute minimum value of the following functions is given intervals : f(x)=(x-1)^(2)+3, x in [-3, 1] .

Find the absolute maximum value and the absolute minimum value of the following functions is given intervals : f(x)=4x-(1)/(2)x^(2), x in [-2, (9)/(2)]

Find the absolute maximum and absolute minimum value of f(x) =(x-2) sqrt(x-1) in [1,9]

Calculate the absolute maximum and absolute minimum value of the function f(x)=(x+1)/(sqrt(x^(2)+1)), 0lexle2.

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

Find the absolute maximum value and the absolute minimum value of f(x)=(1/2-x)^(2)+x^(3)in[-2,2.5]

Find the absolute maximum and absolute minimum values of f(x)=(x-1)^(2)+3 in [-3,1]

CBSE COMPLEMENTARY MATERIAL-APPLICATION OF DERIVATIVES-4 MARK QUESTIONS
  1. Find the equation of the normal at a point on the curve x^(2)=4y, whic...

    Text Solution

    |

  2. Find the point on the curve 9y^2=x^3, where the normal to the curve ma...

    Text Solution

    |

  3. Show that the tangents to the curve y=2x^3-3 at the points where x=...

    Text Solution

    |

  4. Using differentials, find the approximate value of (66)^(1//3)

    Text Solution

    |

  5. sqrt(401)

    Text Solution

    |

  6. Using differentials, find the approximate value of sqrt(0.037).

    Text Solution

    |

  7. sqrt(25.3)

    Text Solution

    |

  8. Using differentials, find the approximate value of (3. 968)^(3/2)

    Text Solution

    |

  9. (26.57)^(1//3)

    Text Solution

    |

  10. Find the value of log(10)(10.1) given that log(10) e=0.4343.

    Text Solution

    |

  11. If the radius of a circle increases from 5 cm to 5.1 cm, find the incr...

    Text Solution

    |

  12. If the side of a cube be increased by 0.1% find the corresponding incr...

    Text Solution

    |

  13. Find the approximate value of f(2.01) where f(x) =x^(3)-4x+7.

    Text Solution

    |

  14. Find approximate value of 1/(sqrt(25. 1)) using differentials.

    Text Solution

    |

  15. The radius of a sphere shrinks from 10 to 9.8 cm. Find approximatel...

    Text Solution

    |

  16. Find the maximum and minimum value of f(x)=sinx+1/2cos2xin[0,pi/2]dot

    Text Solution

    |

  17. Find the absolute maximum value and absolute minimum value of the foll...

    Text Solution

    |

  18. Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the inter...

    Text Solution

    |

  19. Find the absolute maximum and absolute minimum value of f(x) =(x-2) sq...

    Text Solution

    |

  20. Find the difference between the greatest and least values of the funct...

    Text Solution

    |