Home
Class 12
MATHS
Find the absolute maximum and absolute m...

Find the absolute maximum and absolute minimum value of `f(x) =(x-2) sqrt(x-1)` in [1,9]

Text Solution

AI Generated Solution

The correct Answer is:
To find the absolute maximum and absolute minimum values of the function \( f(x) = (x-2) \sqrt{x-1} \) on the interval \([1, 9]\), we will follow these steps: ### Step 1: Evaluate the function at the endpoints of the interval First, we will calculate \( f(1) \) and \( f(9) \). 1. **Calculate \( f(1) \)**: \[ f(1) = (1-2) \sqrt{1-1} = -1 \cdot 0 = 0 \] 2. **Calculate \( f(9) \)**: \[ f(9) = (9-2) \sqrt{9-1} = 7 \cdot \sqrt{8} = 7 \cdot 2\sqrt{2} = 14\sqrt{2} \] ### Step 2: Find critical points by differentiating the function Next, we need to find the derivative \( f'(x) \) and set it to zero to find critical points. 1. **Differentiate \( f(x) \)**: Using the product rule: \[ f'(x) = \frac{d}{dx}[(x-2) \sqrt{x-1}] = (x-2) \cdot \frac{1}{2\sqrt{x-1}} + \sqrt{x-1} \cdot 1 \] Simplifying: \[ f'(x) = \frac{(x-2)}{2\sqrt{x-1}} + \sqrt{x-1} \] Combine the terms: \[ f'(x) = \frac{(x-2) + 2(x-1)}{2\sqrt{x-1}} = \frac{3x - 4}{2\sqrt{x-1}} \] 2. **Set \( f'(x) = 0 \)**: \[ \frac{3x - 4}{2\sqrt{x-1}} = 0 \implies 3x - 4 = 0 \implies x = \frac{4}{3} \] ### Step 3: Evaluate the function at the critical point Now we will evaluate \( f \) at the critical point \( x = \frac{4}{3} \). 1. **Calculate \( f\left(\frac{4}{3}\right) \)**: \[ f\left(\frac{4}{3}\right) = \left(\frac{4}{3} - 2\right) \sqrt{\frac{4}{3} - 1} = \left(-\frac{2}{3}\right) \sqrt{\frac{1}{3}} = -\frac{2}{3} \cdot \frac{1}{\sqrt{3}} = -\frac{2}{3\sqrt{3}} = -\frac{2\sqrt{3}}{9} \] ### Step 4: Compare values to find absolute maximum and minimum Now we compare the values obtained: - \( f(1) = 0 \) - \( f(9) = 14\sqrt{2} \) - \( f\left(\frac{4}{3}\right) = -\frac{2\sqrt{3}}{9} \) ### Conclusion - The absolute maximum value is \( f(9) = 14\sqrt{2} \). - The absolute minimum value is \( f\left(\frac{4}{3}\right) = -\frac{2\sqrt{3}}{9} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 6 MARK QUESTIONS|13 Videos
  • APPLICATION OF DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise 2 MARK QUESTIONS|20 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos

Similar Questions

Explore conceptually related problems

Find the absolute maximum and absolute minimum values of f(x)=(x-1)^(2)+3 in [-3,1]

Find the absolute maximum and absolute minimum values of f(x)=4x-(x^(2))/(2) in [-2,4.5]

Find the local maximum, local minimum, absolute maximum and absolute minimum values of f(x)=x(x-1)^2, x in [0,2]

Find the absolute maximum value and the absolute minimum value of f(x)=sin x+cos x in [0,pi]

Find the local maximum, local minimum, absolute maximum and absolute minimum values of f(x)=x^4-2x^2+5, x in [-2,5]

Find the absolute maximum value and the absolute minimum value of f(x)=(1/2-x)^(2)+x^(3)in[-2,2.5]

Calculate the absolute maximum and absolute minimum value of the function f(x)=(x+1)/(sqrt(x^(2)+1)), 0lexle2.

Find the absolute maximum and absolute minimum values of f(x)=3x^(4)-8x^(3)+12x^(2)-48x+25 in [0,3]

Find the absolute maximum and the absolute minimum values of the following function in the given intervals: f(x)=(x-2)sqrt(x-1) in [1,9]

Find the absolute maximum value and absolute minimum value of the following question f(x) =((1)/(2)-x)^(2)+x^(3)" in "[-2,2.5]