Home
Class 11
MATHS
" If "f(x)=cos(log x)," then "f((1)/(x))...

" If "f(x)=cos(log x)," then "f((1)/(x))f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos(logx) , then show that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(logx) , then : f(x).f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value :

If f(x)=cos(ln x) then f(x)f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value

If f(x)=cos((log)_e x),\ t h e n\ f(1/x)f(1/y)-1/2{f(x y)+f(x/y)} is equal to a. "cos"(x-y) b. log(cos(x-y)) c. 0 d. "cos"(x+y)