Home
Class 12
MATHS
Let f:(-1,1)rarrB be a function defined...

Let `f:(-1,1)rarrB` be a function defined by `f(x)=tan^(-1)[(2x)/(1-x^2)]` . Then `f` is both one-one and onto when `B` is the interval. (a)`[0,pi/2)` (b) `(0,pi/2)` (c)`(-pi/2,pi/2)` (d) `[-pi/2,pi/2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(-1,1)rarr B be a function defined by f(x)=tan^(-1)((2x)/(1-x^(2))). Then f is both one- one and onto when B is the interval

Let f:R rarr B , be a function defined f(x)=tan^(-1).(2x)/(sqrt3(1+x^(2))) , then f is both one - one and onto when B, is the interval

Let f:R rarr [0, (pi)/(2)) be a function defined by f(x)=tan^(-1)(x^(2)+x+a) . If f is onto, then a is equal to

Show that f(x)=tan^(-1)(sin x+cos x) is a decreasing function on the interval on (pi/4,pi/2).

If f:(-(pi)/(2),(pi)/(2))rarr(-oo,oo) is defined by f(x)=tan x then f^(-1)(2+sqrt(3))=

The functions f:[-1//2, 1//2] to [-pi//2, pi//2] defined by f(x)=sin^(-1)(3x-4x^(3)) is

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

Let f:[-(pi)/(3),(2pi)/(3)]rarr[0,4] be a function defined as f(x) as f(x) = sqrt(3)sin x -cos +2 . Then f^(-1)(x) is given by

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?