Home
Class 12
MATHS
If f(x)=(h1(x)-h1(-x))(h2(x)-h2(-x))... ...

If `f(x)=(h_1(x)-h_1(-x))(h_2(x)-h_2(-x))... (h_(2n+1)(x)-h_(2n+1)(-x)a n df(200)=0,` then prove that `f(x)` is many one function.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

If f_r(x),g_r(x),h_r(x),r=1,2,3 are differentiable function and y=|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))| then dy/dx= |(f\'_1(x), g\'_1(x), h\'_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))|+ |(f_1(x), g_1(x), h_1(x)), (f\'_2(x), g\'_2(x), h\'_2(x)),(f_3(x), g_3(x), h_3(x))|+|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f\'_3(x), g\'_3(x), h\'_3(x))| On the basis of above information, answer the following question: Let f(x)=|(x^4, cosx, sinx),(24, 0, 1),(a, a^2, a^3)| , where a is a constant Then at x= pi/2, d^4/dx^4{f(x)} is (A) 0 (B) a (C) a+a^3 (D) a+a^4

If f(1+x)=x^(2)+1 then f(2-h) is

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) If lim+(xto2)f(x)=I , then [I] (where [.] denotes the greatest integer function), is equal to :

If (f(x))/(g(x))=h(x) where g(x)=sqrt(1-|(x^(2))/(x-1)|) and h(x)=(1)/(sqrt(|x-1|-[x])) then the domain of f(x)

If f_(n)(x),g_(n)(x),h_(n)(x),n=1, 2, 3 are polynomials in x such that f_(n)(a)=g_(n)(a)=h_(n)(a),n=1,2,3 and F(x)=|{:(f_(1)(x),f_(2)(x),f_(3)(x)),(g_(1)(x),g_(2)(x),g_(3)(x)),(h_(1)(x),h_(2)(x),h_(3)(x)):}| . Then, F' (a) is equal to

If f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3 are polynomials in x such that f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3 and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| then F'(x) at x = a is ..... .