Home
Class 12
MATHS
[" Suppose "sin^(-1)((2a)/(1+a^(2)))+sin...

[" Suppose "sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x," then "x],[" equals: "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x

sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x , then x is equal to

Solve: sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x .

Solve "sin"^(-1)((2a)/(1+a^(2)))+"sin"^(-1)((2b)/(1+b^(2)))=2"tan"^(-1)x

If Sin^(-1)((2a)/(1+a^(2)))+Sin^(-1)((2b)/(1+b^(2)))=2Tan^(-1)x , then x =

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If sin^(-1) ((2a)/(1 +a^(2))) + sin^(-1) ((2b)/(1 + b^(2))) = 2tan^(-1) x , then x is equal to