Home
Class 12
MATHS
Find the range of f(x)=[sin{x}], where {...

Find the range of `f(x)=[sin{x}],` where `{}` represents the fractional part function and `[]` represents the greatest integer function.
A. `-1`
B. `0`
C. `1`
D. `0.5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of f(f)=log{x}, where {} represents the fractional part function).

Find the domain and range of f(x)=sin^(-1)[x] wher [] represents the greatest function).

Find the range of f(x)=(x-[x])/(1-[x]+x'), where [] represents the greatest integer function.

Evaluate: lim (tan x)/(x) where [.] represents the greatest integer function

Discuss the continuity of the function (I.] represents the greatest integer function) f(x)=[sin^(-1)x]

Domain of the function f(x)=log_(e)cos^(-1){sqrt(x)}, where {.} represents fractional part function

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

The domain of definition of the function f(x)={x}^({x})+[x]^([x]) is where {.} represents fractional part and [.] represent greatest integral function).(a)R -I(b)R-[0,1]R-{I uu(0,1)}(d)I uu(0,1)

Discuss the continuity of the function ([.] represents the greatest integer function ):f(x)=[(2)/(1+x^(2))],x>=0