Home
Class 12
MATHS
lim(x->0)(1/(sin^2x)-1/(sinh^2x))=...

`lim_(x->0)(1/(sin^2x)-1/(sinh^2x))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x->0)(1/(x^2)-1/(sin^2x))

Evaluate: lim_(x->0)(1/(x^2)-1/(sin^2x))

Evaluate: lim_(x->0)(1/(x^2)-1/(sin^2x))

lim_(x->0)[1^(1/sin^2x)+2^(1/sin^2x)+...................+n^(1/sin^2x)]^(sin^2x) =

the value of lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}

lim_(x->0) (1-cos x)/(sin^2 x)

f(n)=lim_(x->0){(1+sin(x/2))(1+sin(x/2^2)).......(1+sin(x/2^n))}^(1/x) then find lim_(n->oo)f(n)

lim_(x to 0) (e^(x^2) - 1)/sin^2x

(sinh(2x))/(1+cosh(2x))=