Home
Class 12
MATHS
lim(x->0) log(cos(x//2)) cosx=...

`lim_(x->0) log_(cos(x//2)) cosx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((log_(sec(x/2))cos x)/(log_(sec x)cos((x)/(2))))=

lim_(x rarr 0) (log_(sec x//2) cos x)/(log_(sec x)cos x//2) is equal to :

Evaluate: ("Lim")_(x->0)((log)_(secx/2)(cosx))/((log)_(secx)(cos(x//2))) 1 (b) 16 (c) 4 (d) 2

lim_(xto0) ((cos x)^(1//2)-(cosx)^(1//3))/(sin^2x) is

Evaluate : lim_(x -> 0 ) ((e^(x^(2)) - cosx )) / x^2

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

(lim)_(x->0)(cos2x-1)/(cosx-1)