Home
Class 13
MATHS
a)(ax+b)/(a+bx)=(cx+d)/(c+dx)quad [a=b,c...

a)(ax+b)/(a+bx)=(cx+d)/(c+dx)quad [a=b,c!=d],x!=-(a)/(b),(-c)/(d)

Promotional Banner

Similar Questions

Explore conceptually related problems

Long-answer type questions (L.A.) (ax+b)/(a+bx)=(cx+d)/(c+dx)(aneb,cned,xne-(a)/(b),-(c)/(d))

d/dx (ax+b)^(cx+d) =

(d)/(dx)[(ax+b)(cx+d)]=

If (a + bx)/(a - bx) = (b + cx)/(b - cx) = (c + dx)/(c - dx)( x ne 0), then a ,b ,c ,d are in

( a+bx) /( a-bx) = ( b+cx)/( b-cx) = ( c +dx)/( c-dx), ( x cancel(=)0) then a,b,c,d are in :

If (a-bx)/(a+bx)=(b-cx)/(b+cx)=(c-dx)/(c+dx) show that a,b,c , d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x ne 0) show that a,b,c,d are in G.P.

If (a+bx)/(a-bx)=(b+cx)/(b-cx)=(c+dx)/(c-dx)(x!=0) then show that a,b,c and d are in G.P.

If (a+bx)/(a-bx) =(b+cx)/(b-cx) =(c + dx)/(c-dx) (x ne 0) , then show that a,b,c and d are G.P.