Home
Class 11
MATHS
" a7."sin^(3)A-cos^(3)A=(sin^(2)A-cos^(2...

" a7."sin^(3)A-cos^(3)A=(sin^(2)A-cos^(2)A)(1-2sin^(2)A cos^(2)A)

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin^(2)3A)/(sin^(2)A)-(cos^(2) 3A)/(cos^(2)A)=

(sin^(2)3A)/(sin^(2)A)-(cos^(2)3A)/(cos^(2)A)=

2sin A cos^(3)A-2sin^(3)A cos A=

Prove that: (sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = (2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2 cos^(2)A) .

(sin^(2)3A)/(sin^2A)-(cos^(2)3A)/(cos^2A)=

sin ^ (6) A + cos ^ (6) A = 1-3sin ^ (2) A cos ^ (2) A

Prove the following identities: (sin+cos A)/(sin A-cos A)+(sin-cos A)/(sin A+cos A)=(2)/(sin^(2)A-cos^(2)A)=(2)/(2sin^(2)A-1)=(2)/(1-2cos^(2)A)

Prove the following identity: (1-s in A cos A)/(cos A(sec A-cos ecA))(sin^(2)A-cos^(2))/(sin^(3)A+cos^(3)A)=sin A

sin^4A-cos^4A=2sin^2A-1=1-2cos^2A=sin^2A-cos^2A

(sin^(3)A+cos^(3)A)/(sin A+cos A)+(sin^(3)A-cos^(3)A)/(sin A-cos A)=2