Home
Class 12
MATHS
lim(n rarr pi)(((n+1)(n+2))/(n^(2)))^(3n...

lim_(n rarr pi)(((n+1)(n+2))/(n^(2)))^(3n)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is

lim_(n rarr oo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) ) =

A) |lim_(n rarr oo)((n^((1)/(2)))/(n^((3)/(2)))+(n^((1)/(2)))/((n+3)^((3)/(2)))+....+(n^((1)/(2)))/( n+3(n-1) ^((3)/(2))))=

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

lim_(x rarr oo) ((2n+1)(3n+2))/(n(n+9))=

The value of lim_(n rarr oo)(1)/(n^(2)){(sin^(3)pi)/(4n)+2(sin^(3)(2 pi))/(4n)+...+n(sin^(3)(n pi))/(4n)} is equal to

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

lim_ (n rarr oo) ((n) / (n ^ (2) +1) + (n) / (n ^ (2) +2) + (n) / (n ^ (2) +3) +. .. (n) / (n ^ (2) + n))