Home
Class 11
MATHS
sqrt(4ab-2(a^(2)-b^(2))i)=...

sqrt(4ab-2(a^(2)-b^(2))i)=

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(4ab - 2i (a^(2) - b^(2) ) =

The square root of 4ab-2i(a^(2)-b^(2))

Find the square roots of : 4ab - 2i( a^(2) - b^(2))

log((a+b)/(2))=(1)/(2)(log a+log b), showthat (a+b)/(2)=sqrt(ab) and a^(2)+b^(2)=2ab

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to 1) (2ab)/(a^(2)-b^(2)) 2) (-2ab)/(a^(2)-b^(2)) 3) (2ab)/(a^(2)+b^(2)) 4) (-2ab)/(a^(2)+b^(2))

If a=(sqrt(5)+sqrt(2))/(sqrt(5)-sqrt(2)) and b=(sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)), find the value of (a^(2)+ab+b^(2))/(a^(2)-ab+b^(2))

Simplify: a^(2)b(a-b^(2))+ab^(2)(4ab-2a^(2))-a^(3)b(1-2b)

If [ sqrt (a ^(2) + b^(2) + ab)] + [ sqrt (a^(2) + b^(2) - ab)] = 1 then what is the value of (1 - a^(2)) (1 - b^(2)) ?

Let A denotes the value of log_(10){(ab+sqrt((ab)^(2)-4(a+b)))/(2)}+log_(10){(log_(10)(ab-sqrt((ab)^(2)-4(a+b))))/(2)} and B denotes the value of the expression (2^(log_(6)18)) Find the value of (A*B)

Find square root of 4ab -2(a^2-b^2) sqrt(-1)