Home
Class 12
MATHS
[" Let "f:(0,oo)rarr(0,oo)" be a "],[" f...

[" Let "f:(0,oo)rarr(0,oo)" be a "],[" function differentiable at "3" and "],[" satisfying "f(3)=3f'(3)" If the "],[" value of "lim_(x rarr oo)((f(3+(3)/(x)))/(f(3)))" is L then "],[([L])/(5)" is (where "[.]" is greatest integer "],[" function) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={x+(1)/(2),x =0 then [(lim)_(x rarr0)f(x)]= (where [.] denotes the greatest integer function)

Let f(x) be a polynomial with positive coefficients,find lim_(x rarr oo)([f(x)])/(f([x])). (where [.] denotes greatest integer function)

Let f(3)=4 and f'(3)=5 . Then lim_(xrarr3) [f(x)] (where [.] denotes the greatest integer function) is

f:(0,oo)rarr(0,oo) defined by f(x)=x^(2) is

f'(3)+f'(2)=0 Find the lim_(x rarr0)((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^((1)/(x))

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

Let f:rarr R rarr(0,oo) be strictly increasing function such that lim_(x rarr oo)(f(7x))/(f(x))=1 .Then, the value of lim_(x rarr oo)[(f(5x))/(f(x))-1] is equal to

Let f (x)= tan/x, then the value of lim_(x->oo) ([f(x)]+x^2)^(1/({f(x)})) is equal to (where [.] , {.} denotes greatest integer function and fractional part functions respectively) -

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f:(0,oo)rarr(0,oo) be a differentiable function satisfying,x int_(x)^(x)(1-t)f(t)dt=int_(0)^(x)tf(t)dtx in R^(+) and f(1)=1 Determine f(x)