Home
Class 12
MATHS
If f:(0,oo)rarr N and f(x)=[(x^(2)+x+1)/...

If `f:(0,oo)rarr N` and `f(x)=[(x^(2)+x+1)/(x^(2)+1)]+[(4x^(2)+x+2)/(2x^(2)+1)]+[(9x^(2)+x+3)/(3x^(2)+1)]...+[(n^(2)x^(2)+x+n)/(nx^(2)+1)],n in N." Then lim_(n rarr oo)((f(x)-n)/((f(x))^(2)-(n^(3)(n+2))/(4)))=l,` then the value of `l^(10)-10^(l)` is (where `[.]` denotes G.I.F and `N` set of natural numbers)

Promotional Banner

Similar Questions

Explore conceptually related problems

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If L=lim_(x rarr oo)(2x3^(2)x2^(3)x3^(4)...x2^(n-1)x3^(n))^((1)/((n^(2)+1))), then the value of L^(4) is

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

Let f(x)=lim_(n rarr oo)(log(2+x)-x^(2n)sin x)/(1+x^(2n)) then

lim_(n rarr oo)([x]+[3x]+[5x]+[(2n-1)x])/(n^(2))

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

If f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)) then

lim_(n rarr oo)( [1^(3)x] + [2^(3)x] + ----- + [n^(3)x] )/(n^(4))

f(x)=(x+1)(x+2)(x+2^(2))+...+(x+2^(n-1)) and g(x)=lim_(n rarr oo)((f(x+(1)/(n)))/(f(x)))^(n) if f(x)!=0=0 if f(x)=0 then g(0)=

f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)), find lim_(x rarr0)f(x)