Home
Class 12
MATHS
If x=cos t+t sin t and y=sin t-t cos t ,...

If `x=cos t+t sin t` and `y=sin t-t cos t` ,then the value of `(d^(2)x)/(dy^(2))`is (where 't' is parameter

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(cos t+t sin t) and y=a(sin t-t cos t)

If x=a(cos t+t sin t) and y=a(sin t-t cos t),then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))

x=a cos t, y=b sin t

If x=a(cos2t+2t sin2t) and y=a(sin2t-2t cos2t), then find (d^(2)y)/(dx^(2))

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t , then the value of |(d^(2) y)/(dx^(2))|_(t= pi//2 ) is