Home
Class 12
MATHS
f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(...

`f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x).`
The value of g(0) is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of f(3) is

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x). The value of f (1) +g (-1) is:

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1).x^(2)+xf'(x)+f''(x) then

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1)x^(2)+xf'(x)+f''(x) then f(g(1)) is equal to

Let f(x)=x^(2)+xg^(2)(1)+g'(2) and g(x)=f(1)*x^(2)+xf'(x)+f''(x) then find f(x) and g(x)

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(x) is