Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `(x+(x^3)/(3!)+(x^5)/(5!)+)/(1+(x^2)/(2!)+(x^4)/(4!)+)=(dx-dy)/(dx+dy)i s` (a) `( b ) (c)2y( d ) e^(( e ) (f)2x (g))( h )=C( i ) e^(( j ) (k)2x (l))( m )+1( n )` (o) (p) `( q ) (r)2y( s ) e^(( t ) (u)2x (v))( w )=C( x ) e^(( y ) (z)2x (aa))( b b )-1( c c )` (dd) (ee) `( f f ) (gg) y( h h ) e^(( i i ) (jj)2x (kk))( l l )=C( m m ) e^(( n n ) (oo)2x (pp))( q q )+2( r r )` (ss) (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

The solution of the differential equation (dy)/(dx) = e^(3x-2y) +x^(2)e^(-2y) ,is

The solution of the differential equation (e^(x^(2))+e^(y^(2)))y(dy)/(dx)+e^(x^(2))(xy^(2)-x)=0is

The solution of the differential equation (dy)/(dx)-(y(x+1))/(x)=0 is given by y=ex^(x+C) b.x=ye^(x) c.y=x+C d.xy=e^(x)+C

The solution of the differential equation (dy)/(dx)+1=e^(x+y), is (x+y)e^(x+y)=0b(x+C)e^(x+y)=0c*(x-C)e^(x+y)=1d(x-C)e^(x+y)+1=0

The solution of the differential eqution (d^(2)y)/(dx^(2)) = e^(-2x) is y = c_(1)e^(-2x) +c_(2)x + c_(3) where c_(1) is

The Integrating Factor of the differential equation x(dy)/(dx)-y=2x^2 is (A) e^(-x) (B) e^(-y) (C) 1/x (D) x

Solution of the differential equation (dx)/(dy)-(x In x)/(1+In x)=(e^(y))/(1+In x) if y(1)=0 is (A) x^(x)=r^(yc^(g))(B)e^(y)=x^(e^(j))(C)x=ye^(y)(D)y=e^(x^(y))