Home
Class 12
MATHS
Find the range of f(x)=(x-[x])/(1-[x]+x ...

Find the range of `f(x)=(x-[x])/(1-[x]+x '),w h e r e[]` represents the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

Find the range of f(x) = e^(x-[x]), x in R

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [] represents the greatest integer function).

Let f(x) = [x] and [] represents the greatest integer function, then

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1], where [.] represents the greatest integer function

Find the domain and range of f(x)=sin^(-1)[x] wher [] represents the greatest function).

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.