Home
Class 12
MATHS
If g is the inverse function of f an f'(...

If `g` is the inverse function of `f` an `f'(x) =x^5/(1+x^4)`.If `g(2) = a,` then `f'(2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(2)=a then g'(2) is equal to

If g is the inverse function of f and f'(x) = sin x then g'(x) =

If g is the inverse of a function f and f'(x)=(1)/(1+x^(n)), g'(x) is equal to

If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)) , then g'(x) is