Home
Class 12
MATHS
Let f:[-pi/3,(2pi)/3]vec[0,4] be a funct...

Let `f:[-pi/3,(2pi)/3]vec[0,4]` be a function defined as `f(x)=sqrt(3)sinx-cosx+2.` Then `f^(-1)(x)` is given by `sin^(-1)((x-2)/2)-pi/6` `sin^(-1)((x-2)/2)+pi/6` `(2pi)/3+cos^(-1)((x-2)/2)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[-(pi)/(3),(2pi)/(3)]rarr[0,4] be a function defined as f(x) as f(x) = sqrt(3)sin x -cos +2 . Then f^(-1)(x) is given by

Let f: [(2pi)/(3), (5pi)/(3)]to[0,4] be a function defined as f (x) =sqrt3 sin x - cos x +2, then :

If f:[(pi)/(2),(3 pi)/(2)]rarr[-1,1] and is defined by f(x)=sin x,thenf^(-1)(x) is given by

Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The range of f(x)=sin^(-1)((x^(2)+1)/(x^(2)+2)) is [0,(pi)/(2)] (b) (0,(pi)/(6))( c) [(pi)/(6),(pi)/(2)](d) none of these

Let a function f:R rarr R be defined as f(x)=x+sin x. The value of int_(0)^(2 pi)f^(-1)(x)dx will be (A)2 pi^(2)(B)2 pi^(2)+2(C)2 pi^(2)-2(D)pi^(2)

f:[-3 pi,2 pi]f(x)=sin3x

Let f : [-(pi)/(2), (pi)/(2)] rarr [3, 11] defined as f(x) = sin^(2)x + 4 sin x + 6 . Show that f is bijective function.