Home
Class 12
MATHS
" D) "y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/...

" D) "y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Differentiate each of the following functions with respect to x:( i) sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

Find (dy)/(dx) in the following: y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt2) lt x lt 1

Differentiate tan^(-1)(x/(sqrt(1-x^2))) with respect to sin^(-1)(2xsqrt(1-x^2)), if -1/(sqrt(2)) < x< 1 /(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)), -1/(sqrt(2))

Differentiate sin^(-1)(2xsqrt(1-x^2)),\ -1/(sqrt(2))

Differentiate sin^(-1)(2x sqrt(1-x^(2))) with respect to tan^(-1)((x)/(sqrt(1-x^(2)))), if -1/(sqrt(2))

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]