Home
Class 12
MATHS
Let f: Xrarryf(x)=s inx+cosx+2sqrt(2) b...

Let `f: Xrarryf(x)=s inx+cosx+2sqrt(2)` be invertible. Then which `XrarrY` is not possible? `[pi/4,(5pi)/4]rarr[sqrt(2,)3sqrt(2)]` `[-(3pi)/4,pi/4]rarr[sqrt(2,)3sqrt(2)]` `[-(3pi)/4,(3pi)/4]rarr[sqrt(2,)3sqrt(2)]` none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let, f: X->y,f(x) = sin x + cos x + 2sqrt2 be invertible. Then which X->Y is not possible? a) [pi/4,(5pi)/4] ->[sqrt(2),3sqrt(2)] b) [-(3pi)/4,pi/4]->[sqrt(2),3sqrt(2)] c) [-(3pi)/4,(3pi)/4]->[sqrt(2),3sqrt(2)] d) none of these

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

int_(-pi//4)^(pi//4)|sinx|dx=(2-sqrt(2))

cot((pi)/(24))=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Prove that: cos((3pi)/(4)+A)-cos((3pi)/(4)-A)=-sqrt(2)sinA

lim_(x rarr pi/4)(sqrt(cos x)-sqrt(sin x))/(x-(pi)/(4))

lim_(x rarr3)(sqrt(3x)-3)/(sqrt(2x-4)-sqrt(2)) is equal to

If pi<2 theta<(3 pi)/(2), the n sqrt(2+sqrt(2+2cos4 theta))

Evaluate: int_-(pi/4)^((3pi)/4) (sqrt(2)[1+sin(x-pi/4)])/(sqrt(2)-cos|x|+sin|x|)dx

Prove that: int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x)dx=sqrt(2)*(pi)/(2)