Home
Class 10
MATHS
(1i)(1+x^(2))(dy)/(dx)+y=tan^(-1)x...

(1i)(1+x^(2))(dy)/(dx)+y=tan^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equations (i) (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1))x (ii) (1+x^(2))(dy)/(dx) + y = tan^(-1)x

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

Solve: (1+x^2)(dy)/(dx) = y+tan^(-1)x

(dy)/(dx)=1+x tan(y-x)

y^(2)-(dy)/(dx)=x^(2)(dy)/(dx) A) y^(-1)+tan^(-1)x=c B) x^(-1)+tan^(-1)y=c C) y+tan^(-1)x=c D) x^(-1)+y^(-1)=tan^(-1)x+c

Solve the following differential equations (i) (1+y^(2))dx = (tan^(-1)y - x)dy (ii) (x+2y^(3))(dy)/(dx) = y (x-(1)/(y))(dy)/(dx) + y^(2) = 0 (iv) (dy)/(dx)(x^(2)y^(3)+xy) = 1