Home
Class 11
MATHS
for a matrix A=|[1,2r-1],[0,1]| the valu...

for a matrix `A=|[1,2r-1],[0,1]|` the value of `pi_(r-1)^50 |[1,2r-1],[0,1]|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

For a matrix A=[[1,2r-1] , [0,1]] then prod_(r=1)^(60) [[1,2r-1] , [0,1]]=

For a matrix A=[[1,2r-1] , [0,1]] then prod_(r=1)^(60) [[1,2r-1] , [0,1]]=

For a matrix A=[[1,2r-1] , [0,1]] then prod_(r=1)^(60) [[1,2r-1] , [0,1]]=

For a matrix A=[[1,2r-10,1]] then prod_(r=1)^(60)[[1,2r-10,1]]

If A=[[sin((3+r)(pi)/(4)),1,0],[cos((3+r)(pi)/(4)),1,1],[(1)/(7),1,1]], then value of sum_(r=0)^(6)|A| is equal to

If x^(2)-x+1=0, then the value of sum_(r=1)^(2010)(x^(r)-(1)/(x^(r)))^(3) is equal to

If the value of prod_(k=1)^(50)[{:(1,2k-1),(0,1):}] is equal to [{:(1,r),(0,1):}] then r is equal to

If the value of prod_(k=1)^(50)[{:(1,2k-1),(0,1):}] is equal to [{:(1,r),(0,1):}] then r is equal to

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to