Home
Class 12
MATHS
I=int tan^(4)x*dx...

I=int tan^(4)x*dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int tan^(4)x dx = A tan^(3) x+ B tan x + f(x) , then

int tan^(4)x dx = A tan^(3) x+ B tan x + f(x) , then

int tan^(4)x dx = A tan^(3) x+ B tan x + f(x) , then

If int tan^4 x dx = a tan^3 x + b tan x + phi(x) then

Integration of trigonometric and hyperbolic functions (a) I = int cot^(6) x dx, (b) I = int tan^(3) x dx.

If I_n = int tan^n x dx , then prove that I_n = (tan^(n-1) x)/(n - 1) - I_(n - 2) . Hence find int tan^7 x dx

If I_(n) = int tan^(n) " x dx then " I_(0) + 2I_(2) + I_(4) =

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

If I = int tan^(-1)((2x)/(1-x^(2)))*dx then I-2x*tan^(-1)x =