Home
Class 12
MATHS
Prove that i) tan^(-1)(1+x)/(1-x)=pi/4...

Prove that
i) `tan^(-1)(1+x)/(1-x)=pi/4 + tan^(-1)x,x lt 1`
ii) `tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)