Home
Class 12
MATHS
[" If "x^(2)+y^(2)=t+(1)/(t)" and "x^(4)...

[" If "x^(2)+y^(2)=t+(1)/(t)" and "x^(4)+y^(4)=t^(2)+(1)/(t^(2))" then "x^(3)y(dy)/(dx)" is "],[" equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2) + y^(2) = t + (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) then (dy)/(dx) =

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x^(2) + y^(2) = t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) , then (dy)/(dx) =

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that, x^(3)y(dy)/(dx)=1

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

If x^(2) + y^(2) = t + (2)/(t) and x^(4) + y^(4) = t^(2) + (4)/(t^(2)) , then x^(3)y(dy)/(dx) =

If x^(2)+y^(2)=t+(1)/(t) "and" x^(4)+y^(4)=t^(2)+(1)/(t^2), "then" (dy)/(dx) is equal to

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then ((dy)/(dx))_((1.1)) is…………