Home
Class 12
MATHS
Let f:[-1, 10]vecR ,w h e r ef(x)=sinx+[...

Let `f:[-1, 10]vecR ,w h e r ef(x)=sinx+[(x^2)/a],` be an odd function. Then the set of values of parameter `a` is/are `(-10 ,10)~{0}` (b) `(0, 10)` `(100 ,oo)` (d) `(100 ,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[-10,10]rarr R where f(x)=sin x+[(x^(2))/(a)] be an odd function. Then set of values of parameter a is/are ( [.] denotes greatest integer function)

Let f(x)=a^(x)-x ln a, a> 1. Then the complete set of real values of x for which f(x)>0 is (a)(1,oo)(b)(-1,oo)(c)(0,oo)(d)(0,1)

If f(x)=(t+3x-x^(2))/(x-4), where t is a parameter that has minimum and maximum,then the range of values of t is (0,4)(b)(0,oo)(-oo,4)(d)(4,oo)

The equation 2^(2x)+(a-1)2^(x-1)+a=0 has root of opposite signs, then the set of values of a is. a) a in (0,oo) b) a in (-1,0) c) ain (oo,1/3) d) a in (0,1/3)

If log_(x)(0.1)=-(1)/(3), then the value of x is a.10 b.100 c.1000 d.(1)/(1000)

Let f:R rarr[0,(pi)/(2)) be defined by f(x)=tan^(-1)(x^(2)+x+a)* Then the set of values of a for which f is onto is (a)(0,oo)(b)[2,1](c)[(1)/(4),oo](d) none of these

Let f:(-1,oo) rarr R be defined by f(0)=1 and f(x)=1/x log_(e)(1+x), x !=0 . Then the function f:

The set of points where the function f(x)=x|x| is differentiable is (-oo,oo)(b)(-oo,0)uu(0,oo)(0,oo)(d)[0,oo)

The set of points where the function f(x)=x|x| is differentiable is (a)(-oo,oo) (b) (-oo,0)uu(0,oo)(c)(0,oo)(d)[0,oo]

Statement-1: Every function can be uniquely expressed as the sum of an even function and an odd function. Statement-2: The set of values of parameter a for which the functions f(x) defined as f(x)=tan(sinx)+[(x^(2))/(a)] on the set [-3,3] is an odd function is , [9,oo)