Home
Class 12
MATHS
The function f(x)=sum(k=1)^5 (x-K)^2 ass...

The function `f(x)=sum_(k=1)^5 (x-K)^2` assumes then minimum value of `x` given by (a) `5` (b) `5/2` (c) `3` (d) `2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sum_(k=1)^(5)(x-k)^(2) assumes minimum value for x given by:

The function f(x)=sum_(r=1)^5(x-r)^2 assuming minimum value at x= (a) 5 (b) 5/2 (c) 3 (d) 2

The function f(x)=sum_(r=1)^5(x-r)^2 assuming minimum value at x= (a) 5 (b) 5/2 (c) 3 (d) 2

The function f(x)=sum_(r=1)^(5)(x-r)^(2) assuming minimum value at x=(a)5(b)(5)/(2)(c)3(d)2

The minimum value of |x-3|+|x-2|+|x-5| is (A) 3 (B) 7 (C) 5 (D) 9

The minimum value of |x-3|+|x-2|+|x-5| is (A) 3 (B) 7 (C) 5 (D) 9

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

The function f(x)=(K tan x+2)/(tanx +1) is decreasing for all values of x then (A) K (B) K>1 (C) K (D) K>2