Home
Class 12
MATHS
The range of the function f(x)=(e^x-e^(|...

The range of the function `f(x)=(e^x-e^(|x|))/(e^x+e^(|x|))` is `(-oo,oo)` (b) `[0,1]` `(-1,0]` (d) `(-1,1)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=(e^(x)-1)/(e^(x)+1) is

Range of the function f(x)=cos^(-1)((1)/(e^(x)+e^(-x))) is

Range of the f(x)=(e^(x)-1)/(e^(x)+1)

Range of the f(x)=(e^(x)-1)/(e^(x)+1)

Range of the f(x) = (e^(x) - 1)/(e^(x) + 1)

62.Range of the f(x)=(e^(x)-1)/(e^(x)+1)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

Range of the function f(x)=(ln x)/(sqrt(x)) is (a) (-oo,\ e) (b) (-oo,\ e^2) (c) (-oo,2/e) (d) (-oo,1/e)

The interval of increase of the function f(x)=x-e^(x)+tan(2 pi/7) is (a) (0,oo)(b)(-oo,0)(c)(1,oo)(d)(-oo,1)