Home
Class 12
MATHS
If f:[0,oo]->[0,oo) and f(x)=x/(1+x), th...

If `f:[0,oo]->[0,oo) and f(x)=x/(1+x),` then `f` (a) one-one and onto (b)one-one but not onto (c)onto but not one-one (d)neither on-one nor onto

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f:[0,\ oo)->R given by f(x)=x/(x+1) is (a) one-one and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto

Let f: RrarrRa n dg: RrarrR be two one-one and onto function such that they are the mirror images of each other about the line y=a. If h(x)=f(x)+g(x),t h e nh(x) is (a)one-one and onto (b)only one-one and not onto (c)only onto but not one-one (d)neither one-one nor onto

Let the function f:R rarr R be defined by f(x)=2x+sin x for x in R .Then f is (a)one-to-one and onto (b)one-to-one but not onto (c)onto but not-one-to-one (d)neither one- to-one nor onto

Let f: R->R be a function defined by f(x)=(x^2-8)/(x^2+2) . Then, f is (a) one-one but not onto (b) one-one and onto (c) onto but not one-one (d) neither one-one nor onto

f(x)={(x", if x is rational"),(0", if x is irrational"):}, g(x)={(0", if x is rational"),(x", if x is irrational"):} Then, f-g is (A) one-one and onto (B) one-one but nor onto (C) onto but not one-one (D) neither one-one nor onto

The function f::[0,3]rarr[1,29], defined by f(x)=2x^(3)-15x^(2)+36x+1, is (a) one-one and onto (b) onto but not one-one (c) one-one but not onto (d) neither one-one nor onto

the function f : R rarr [ -1,1 ] defined by f(x) = cos x is (a) both one-one and onto (b) not one-one, but onto (c) one-one, but not onto (d) neither one-one, nor onto

Let A be a non- empty set of real numbers and f:A->A be such that f(f(x))=x AA x in R then f(x) is (A) bijection (B) one-one but not onto (C) onto but not one-one (D) neither one-one nor onto

If a function f:[2,\ oo)->R defined by f(x)=(x-1)(x-2)(x-3) is (a) one-one but not onto (b) onto but not one-one (c) both one and onto (d) neither one-one nor onto

f: R rarr R,f(x)=x|x| is (A) one-one but not onto (B) onto but not one-one (C) Both one-one and onto (D) neither one-one nor onto