Home
Class 12
MATHS
The domain of definition of the function...

The domain of definition of the function `f(x)=sqrt(sin^(-1)(2x)+pi/6)` for real-valued `x` is `[-1/4,1/2]` (b) `[-1/2,1/2]` (c) `(-1/2,1/9)` (d) `[-1/4,1/4]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real valued of x, is

The domain of definition of the function f(x)= sin^(-1) (|(x-1)|-2) is

The domain of definition of function f(x)=sqrt(cos^(-1)x-2sin^(-1)x) is equal to

The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is

The domain of definition of the function f(x)=sqrt((x-2)/(x+2))+sqrt((1-x)/(1+x)) is