Home
Class 12
MATHS
The domain of definition of f(x)=((log)2...

The domain of definition of `f(x)=((log)_2(x+3))/(x^2+3x+2)` is `R-{-1,-2}` (b) `(-2,oo)` `R-{-1,-2,-3}` (d) `(-3,oo)-{-1,-2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of f(x)=sin^(-1){log_(2)(x^(2)+3x+4)} is

The domain of the function f(x)=(log)_(3+x)(x^(2)-1) is

The domain of definition of function of f(x)=(log_(2)(x+3))/(x^(2)+3x+2) is

The domain of f(x)=((log)_(2)(x+3))/(x^(2)+3x+2) is R-{-1,2}(b)(-2,oo)R-{-1,-2,-3}(d)(-3,oo)-(-1,-2}

The domain of definition of f(x)=log_(0.5){-log_(2)((3x-1)/(3x+2))} , is

The domain of definition of f (x) = sin ^(-1) {log_(2)(x^(2) + 3x + 4)} , is

The domain of the function f(x)=(log_(e)(log_((1)/(2))|x-3|))/(x^(2)-4x+3) is

The domain of the function f(x)=(log_(e)(log_((1)/(2))|x-3|))/(x^(2)-4x+3) is (A) (-oo,4)-{3} (B) (4,oo) (C) (2,4)-{3} (D) (-oo,4)-{1,3}

The domain of definition of the function f(x) = log_(3) {-log_(1//2)(1+(1)/(x^(1//5)))-1}