Home
Class 12
MATHS
cos^(-1)[(sqrt(1+cos x))/(2)]=(pi)/(2)...

cos^(-1)[(sqrt(1+cos x))/(2)]=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)((7)/(|x|))+cos^(-1)((4sqrt(15))/(|x|))=(pi)/(2) , then:

If cos^(-1)((7)/(|x|))+cos^(-1)((4sqrt(15))/(|x|))=(pi)/(2) , then:

If 1/(sqrt(2))

prove that tan^(-1)((cos x)/(1-sin x))-cot^(-1)((sqrt(1+cos x))/(sqrt(1-cos x)))=(pi)/(4),x varepsilon(0,(pi)/(2))

arctan^(-1)((cos x)/(1-sin x))-cos^(-1)(sqrt((1+cos x)/(1-cos x)))=(pi)/(4),x in(0,(pi)/(2))

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

Prove that cos^(-1)((sqrt(1+x)+sqrt(1-x))/(2))=(pi)/(4)-(1)/(2)cos^(-1)x

Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)

cos ^ (- 1) sqrt ((1 + cos x) / (2)); AA0

Solve the following equations : cos^(-1)(sqrt3x)+cos^(-1)x=pi/2