Home
Class 12
MATHS
Let g(x)=1+x-[x] and f(x)={-1,x < 00, x=...

Let `g(x)=1+x-[x] and f(x)={-1,x < 00, x=0 f, x > 0.` Then for all `x,f(g(x))` is equal to (where [.] represents the greatest integer function). (a) `x` (b) `1` (c) `f(x)` (d) `g(x)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=1+x-[x] and f(x)=-1 if x 0, then f|g(x)]=1x>0

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

Let g(x) = 1 + x – [x] and f(x)={:{(-1,if,xlt0),(0,if, x=0),(1,if,x gt0):} then Aax, fog(x) equals (where [ * ] represents greatest integer function).

Let g(x) = x - [x] - 1 and f(x) = {{:(-1", " x lt 0),(0", "x =0),(1", " x gt 0):} [.] represents the greatest integer function then for all x, f(g(x)) = .

If (x)={g^(x),x =0f(x)={g^(x),x =0 where [.1) denotes the greatest integer function. The f(x)

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is